
1.  Introduction
The National Aeronautics and Space Administration (NASA) commissioned a 2017 Decadal Survey report 
by the National Academies of Science, Engineering and Medicine to prioritize Earth science measurements 
in the coming decade. This report designated a global Surface Biology and Geology (SBG) investigation 
with Visible and Shortwave InfraRed (VSWIR) imaging spectroscopy and Thermal InfraRed (TIR) imagery 
(National Academies of Sciences, Engineering, and Medicine, 2018). Such instruments have a long prior 
history of regional airborne and orbital campaigns, but SBG's scale will be dramatically larger. It will cover 
Earth's entire terrestrial and coastal aquatic area at an approximate 16 day cadence. Data sharing with the 
European Space Agency's Copernicus Hyperspectral Imaging Mission (CHIME) (Nieke & Rast, 2018) could 
permit an 8–11 day cadence in some areas. It will reach regions that have been underserved by previous 
campaigns, such as terrestrial and aquatic biodiversity hotspots throughout South America, Sub-Saharan 
Africa, and Southeast Asia (Jetz et al., 2016; Myers et al., 2000; Schimel et al., 2020). SBG will provide the 
first global spectroscopic map and the first dense spectroscopic time series, revealing planetary process-
es—such as ecosystem function and biodiversity, land cover change and hydrology, and the occurrence of 
natural hazards—to understand the whole Earth as a system.

Abstract  The Surface Biology and Geology (SBG) investigation will create global maps of spectral 
surface reflectance and emissivity at a cadence of 16 days or better, with coverage to address global 
questions about Earth's geology, cryosphere and ecosystems. The revolutionary potential poses a 
commensurate challenge: creating contiguous maps free from regional biases induced by atmosphere, 
observation geometry, or inversion error. This will require an accurate calibration with precise knowledge 
of each channel's spectral response. Here, we quantify the impact of spectral calibration on SBG's 
aquatic and terrestrial ecosystem objectives. We find that contemporary algorithms for ecosystem trait 
retrieval demand more accurate spectral calibration than historical missions. Errors due to drift or spatial 
nonuniformity in the wavelength calibration that have previously been considered acceptable can cause 
systematic errors larger than the instrument noise and of the same order as the variability SBG aims to 
measure. Moreover, their impact on atmospheric correction can induce climate-dependent systematic 
errors that thwart comparisons between ecosystems. These results underscore the importance of spectral 
response accuracy in SBG mission design.

Plain Language Summary  Remote imaging spectrometers operating in visible to shortwave 
infrared wavelengths of the electromagnetic spectrum measure the intensity of solar-reflected light as 
hundreds of distinct channels. This requires knowing the precise spectral range to which each channel 
is sensitive. The accurate association of wavelengths to instrument channels is known as the spectral 
calibration of the instrument, or simply spectral fidelity. Small errors in this calibration can have a 
significant impact on measurement accuracy. This study evaluates the sensitivity of a future global 
investigation of Earth's ecosystems to such errors. We find that small errors in spectral calibration can 
cause large inaccuracies in maps of ecosystem properties. This means that accurate spectral calibration 
will be critical for the success of these future investigations.
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We focus here on the VSWIR component, which is likely to span the 380–2,500 nm range with approxi-
mately 10 nm spectral sampling and 30–60 m spatial resolution. It is sensitive to diverse surface properties, 
including: snow albedo, grain size, and contaminants; maps of sessile aquatic organisms such as seagrass 
and coral reefs; functional traits of terrestrial vegetation to understand ecosystem-level condition, diver-
sity, and change; maps of mineralogy and surface composition, including soil properties and chemistry; 
coastal aquatic and inland water composition, productivity, and biological diversity; and more (Cawse-Ni-
cholson et al., 2021; Schimel et al., 2020). All these VSWIR measurements involve three core operations. 
First, investigators calibrate sensor data to measure the spectral radiance at the sensor, that is, the intensity 
of reflected radiation from the surface and atmosphere in each spectral channel. Second, they invert an 
atmospheric Radiative Transfer Model (RTM) to estimate the hemispherical directional surface reflectance 
(D. R. Thompson, Babu, et al., 2019), from which view-independent reflectance quantities can be derived 
(Figure 1). Third, investigators analyze these reflectance and emissivity products to quantify surface prop-
erties. In all cases, the downstream analyses are only as accurate as the original radiometric measurement. 
Accurate spectroradiometry forms the foundation for all later analyses, and deserves special attention in 
mission design.

Instrument performance is often represented by radiometry—the accurate measurement of the radiant in-
tensity. Radiometric performance standards are generally well understood, with studies across many disci-
plines (Swayze et al., 2003). Here we deal with a less common but equally important aspect of performance, 
the calibration of the spectral response, or simply spectral fidelity (Mouroulis et al., 2000). Failure to accu-
rately calibrate the instrument spectral response can impact surface measurements by shifting or diluting 
reflectance features. It can also damage atmospheric correction, since imaging spectrometers estimate the 
atmospheric state from the data themselves, and spectral miscalibration can distort the shapes and positions 
of atmospheric absorptions. These errors are systematic; they do not average down over multiple observa-
tions and thus propagate directly into erroneous conclusions at the global scale. Moreover, contemporary 
VSWIR imaging spectrometers show more variability in spectral calibration than radiometric performance. 
Yet while the Decadal Survey prescribed standards for SBG radiometry, it did not give any for spectral cali-
bration. This study fills the gap by evaluating the impact of spectral calibration on SBG objectives.

This study considers two kinds of spectral calibration errors. The first is error in the center wavelengths for 
each channel. This can occur due to sensor drift, but is more often caused by uncorrected spatial nonuni-
formities like frown (Neville et al., 2003) or twist distortions (Figure 2) that cause cross-track locations to 
have different wavelength centers (Richter et al., 2010). The second error involves departure of the spectral 
response function from the assumed—typically Gaussian—profile. This often occurs when scatter from 
optical surfaces broadens the spectral response, elevating the tails and blurring spectral features (D. R. 
Thompson, Boardman, et  al.,  2018; Zong et  al.,  2006). Figure  3 shows the effects of each distortion on 
the spectral response function, and Figure 4 shows the associated radiance errors. A gray overlay shows 
the high resolution structure of the atmospheric radiance. Wavelength shifts induce asymmetric residuals, 
while stray spectral response changes the apparent depth and width of atmospheric absorption features.

Several studies precede us. Nieke et al. (2008) give a comprehensive review of spectroradiometric uncer-
tainties and their aggregate affect on radiance errors. Others assess the effect of wavelength calibration on 
atmospheric inversions (Dadon et al., 2010; Richter et al., 2010; Guanter, Richter, & Moreno, 2006; Kuhl-
mann et al., 2016; D. R. Thompson, Boardman, et al., 2018). Similar corrections appear in planetary science 
(Ceamanos & Douté, 2010). Green (1998) quantifies systematic errors caused by wavelength miscalibration, 
and in later work the impact on water vapor estimation error (Green, 2001). These prior studies generally 
evaluate errors in surface reflectance terms. To our knowledge no study has attempted to quantify the im-
pact of spectral calibration on the end products of a multifaceted global investigation like SBG.

Spectral calibration accuracy is difficult to predict because it rests on a chain of optical design decisions, 
alignment procedures, and any software corrections (Bender et  al.,  2011; D. R. Thompson, Boardman, 
et al., 2018). Investigators have occasionally attempted post-processing to characterize and potentially cor-
rect these spectral response errors (Ceamanos & Douté, 2010; D. R. Thompson, Boardman, et al., 2018). 
However, there is no gold standard remedy. Corrections can introduce their own interpolation errors (Bend-
er et al., 2011), and in any case may not fully correct the distortion (Alonso et al., 2019). Consequently, this 
study assesses the effects of uncorrected residual miscalibration. We first describe the experimental design, 
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including the strategy for synthesizing, inverting, and analyzing distorted radiance spectra. We then present 
results and discuss implications for SBG and other future imaging spectrometer missions.

2.  Method
We evaluate the impact of spectral calibration errors in simulation. Specifically, we define a true surface 
and atmospheric state and then apply an atmospheric RTM to synthesize spectral radiance at the sensor. 
We then simulate the measurement process, applying some level of spectroscopic distortion in either (a) 
wavelength center position or (b) stray spectral response. We invert the resulting distorted measurement 
to estimate surface reflectance, and apply downstream algorithms to evaluate the impact on the resulting 
products.

While SBG has many products, we focus on two benchmark cases measuring terrestrial and aquatic ecosys-
tems. These studies are particularly challenging because they involve parts of the visible and near infrared 
spectrum with high contrast atmospheric and solar lines. Additionally, their global scope requires recon-
ciling measurements acquired under a wide range of conditions. Finally, ecosystem trait and functional 
type analyses often rely on full-spectrum models which are finely tuned to subtle features of specific wave-
lengths. These factors make them likely to drive spectral calibration needs.

The first benchmark case is a vegetation functional trait analysis. These functional traits include nutrient 
and pigment concentrations, leaf structure, and metabolic parameters. They represent the ecological and 
evolutionary processes that drive plant function, and indicate plant health, efficiency, and ecosystem di-
versity (Cavender-Bares et al., 2020). Pigments and water content may be estimated at a leaf level by leaf 
RTMs (DiVittorio,  2009; Féret et  al.,  2017; Shiklomanov et  al.,  2016), but these algorithms are typically 
computationally intensive and require additional ancillary information such as the plant to soil ratio in the 
pixel. A more common alternative is to fit statistical relationships between individual spectra and chemical 
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Figure 1.  Right: Spectral radiance measured by an orbiting sensor observing vegetation. The radiance incorporates the surface reflectance but also atmospheric 
scattering and absorptions due to gas absorption features. Right: The associated spectral surface reflectance. Gaps in the spectrum correspond to deep water 
vapor absorption features that are opaque to remote sensing.

Figure 2.  Left: The spectrometer observation system, adapted from Mouroulis et al. (2000). Center and Right: Nominal and distorted projections onto the focal 
plane array.
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and structural composition (such as nitrogen content, chlorophyll, leaf mass, and lignin) using partial least 
squares regression, or PLSR (Wold et al., 2001). Once the model coefficients have been derived, this method 
is computationally efficient and has been applied to many remotely sensed data sets (Asner et al., 2015; 
Coops et al., 2003; Serbin et al., 2014; Singh et al., 2015; Townsend et al., 2003; Wang et al., 2019, 2020). It has 
shown good performance in a wide range of conditions, making it a primary candidate for SBG. However, 
PLSR requires significant initial training, and is sensitive to small systematic perturbations in the spectral 
input (Singh et al., 2015). Here we base our analysis on the models of Chadwick et al. (2020). That work was 
a regional study but typifies state of the art vegetation analysis that might apply on a broader scale to SBG. 
A training set of remote spectra and paired field measurements is used to train a PLSR model that predicts 
functional traits for tree canopy spectra. We select five moderately dense tree canopy spectra that represent 
the data set. We then apply the PLSR coefficients to estimate three canopy traits: leaf mass per area (LMA), 
which averaged 399.2 g 2m ; nitrogen content (N), which averaged 2.25% of dry leaf mass; and leaf water 
content (LWC), which averaged 49.92% of fresh leaf mass. The original study used tenfold cross validation, 
resulting in ten models trained on different held out subpopulations. We take the average prediction of the 
models as the aggregate estimate.

The second benchmark case typifies a coastal aquatic study. Coastal and inland waters show diverse spectral 
shapes (Dekker et al., 2002) that reveal water column constituents such as phytoplankton pigments, carbon 
in particulate and dissolved forms, and suspended sediment (Hestir et al., 2015). These constituents can 
indicate water quality in inland water ecosystems and productivity in coastal regions. While many of these 
absorption signatures overlap, contemporary VSWIR imaging spectrometers provide sufficient spectral res-
olution to estimate them independently. Here we consider three well-understood water column constitu-
ents: chlorophyll, Colored Dissolved Organic Matter (CDOM), and sediments. We limit ourselves to the 
dominant phytoplankton pigment for simplicity, but more sophisticated community structure retrievals are 
possible (Cael et al., 2020; Kramer & Siegel, 2019) and will certainly be important for SBG. Water column 
constituent signals appear in the visible and UV wavelengths of water leaving reflectance spectra. Since 
these targets are dark, and the atmospheric scattering in short wavelengths is strong, the target signal is 
a small fraction of the measured radiance. Consequently, accurate atmospheric correction is critical. We 
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Figure 3.  The spectral response function (SRF) under different spectroscopic distortions. Left: wavelength shift of 0.1 nm (10% of the channel spacing). Right: 
stray spectral response.

Figure 4.  Effects of different distortions on measured radiance. The gray line refers to the actual radiance at sensor, shown with high spectral resolution. Left: 
Wavelength shift and associated residuals. Right: Stray spectral response and associated residuals.
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use a water-leaving reflectance spectrum calculated using the Hydrolight RTM (Mobley, 1994), with as-
sumptions typical of Case II coastal waters. We simulate ten spectra with chlorophyll a concentrations of 
0.2–0.5 mg 3m , CDOM absorption of 0.1–0.3 at 440 nm, and sediment concentrations of 0.5–1 g 3m , all 
typical of continental shelf zones targeted by SBG. We calculate water-leaving reflectance at 1 nm spectral 
sampling and interpolate to SBG spectral sampling. Our inversion is a popular method similar to that of 
Mobley et al. (2005). In advance, we calculate a comprehensive table of water-leaving reflectance spectra for 
a wide range of parameter values. We then perform a least squares fit of the measured surface reflectance by 
adjusting the concentrations of chlorophyll, CDOM and suspended minerals, finding the associated model 
reflectance with multilinear interpolation in the lookup table.

Figure 5 shows the spectral gain coefficients (Rodgers, 2000) for both reflectance inversions. Gain coeffi-
cients represent the partial derivative of the estimate with respect to a change in the input reflectance for 
each channel. They are evaluated at the true state. These shapes indicate the reflectance changes which 
would increase the estimated quantity. For the PLSR model at left, the inversion is perfectly linear so the 
gain coefficients are the PLSR coefficients. For the aquatic case, the coefficients were calculated as in Rodg-
ers (2000) using a local linearization of the lookup table reflectance model and uniform noise assumptions. 
The terrestrial coefficients show rapid oscillations and large first derivatives which make them sensitive to 
wavelength miscalibrations.

To transform terrestrial and aquatic reflectances into measured radiance we must posit a set of observ-
ing conditions. These observing conditions can influence sensitivity to wavelength miscalibration, since its 
impact depends on the depth and shape of gas absorption features. Rather than attempt to anticipate the 
distribution of SBG atmospheres, we simulate two different scenarios that span a range of conditions. Spe-
cifically, we consider observations of a surface at sea level with an atmosphere that is either dry or humid 
(with water vapor columns of 1.5 or 3 g 2cm  respectively). We use haze free aerosol loading (AOD  0.05) 
in all cases. We evaluated performance for a solar zenith angle at 45°, a common situation in both tropical 
and midlatitude regions for a polar orbit with 10:30 h crossing time.

Following Vermote et al. (1997), our observation model relates the surface reflectance s, to the radiance at 
sensor obsL  with the following expression:
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Figure 5.  Gain coefficients for both terrestrial (Left) and aquatic (Right) inversion algorithms. They show the partial derivative of the estimate with respect to 
each reflectance channel. The partial least squares regression (PLSR) model at left oscillates rapidly, and is more sensitive to spectral nonuniformities than the 
smooth lookup table inversion at right.
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Here, s is the solar zenith angle, and all other variables are vector-valued spectra with  representing ele-
ment-wise multiplication. E is the extrasolar irradiance, a is the path reflectance, and s is the spherical sky 
albedo. The symbol b represents the reflectance of the background outside the pixel. The total downward 
transmittance along the sun to ground path is t . The upward transmittance is written as a sum of a diffuse 
portion dift , and a direct portion dirt . The total transmittance t is the product of upward and downward 
transmittances. For an isotropic reflector following Lambert's cosine law, dividing by   converts the irradi-
ance quantity E into a radiance. We further simplify the model by taking the spatial reflectance field to be 
uniform, in which case  s b :
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We calculate values of s, t, and a using the MODTRAN 6.0 RTM (Berk & Hawes, 2017) for a given atmos-
pheric state. Our calculations use a high resolution 0.1 1cm  correlated-k band model. Note that expression 
2 assumes the surface is Lambertian. Accounting for photometric effects of observation geometry is outside 
the scope of this work; such treatments generally use empirical or geometric optical models that are in-
sensitive to spectral calibration, so we can safely ignore them. After calculating the radiance at the sensor 
aperture, we add sensor noise to simulate the measurement process. We use instrument noise similar to the 
standard recommended by the Decadal Survey: a signal-to-noise ratio (SNR) of 400 in the Visible to Near 
infrared from 400 to 1,500 nm, and an SNR of 250 in the Shortwave Infrared from 1,500 to 2,500 nm. The 
Decadal Survey defined these SNR standards for a 25% reflective surface, so spatial averaging, or co-add-
ing, might be necessary to achieve this noise level over dark aquatic targets. We apply random noise inde-
pendently to every radiance channel, which is appropriate for photon shot noise, read noise, and electronic 
signal chain effects. We assume a channel spacing and spectral response full width at half maximum of 
10 nm. We simulate measurements by resampling the high-resolution radiative transfer calculation using 
artificial wavelength offsets ranging from 0 to 2 nm in 0.2 nm increments, representing various degrees 
of spectral calibration shift. These offsets are applied uniformly to all channels, reflecting typical smile or 
shift-related errors in grating-based imaging spectrometers. Prism-based spectrometers might experience 
more severe transformations, such as wavelength-dependent changes in dispersion. We also apply a blur-
ring operation representing off-nominal thick tails of the response function. Specifically, we construct a 
linear spectral blurring operator as in D. R. Thompson, Boardman et al. (2018). This thick tailed response is 
a second Gaussian line shape with a width that is, four times the main response, and a magnitude that varies 
from 0 to 0.0005 times that of the central peak. Naturally, different instruments may have many response 
function shapes, so our model provides only a rough indication of sensitivity to this parameter.

We invert the distorted radiance measurements using a Bayesian Maximum A Posteriori procedure similar 
to previous work (D. R. Thompson, Natraj, et al., 2018). This inversion aims to maximize the posterior prob-
ability of the state vector given the measurement, accounting for noise and prior background knowledge. 
We define a forward model ( )F x  which transforms the state vector x of surface and atmospheric parameters 
onto the radiance at the sensor obsL . The measurement y is perturbed by random observation noise  :

( ) y F x � (3)

The free parameters in the retrieval form a state vector x containing the reflectance in every channel, and 
two additional values describing the aerosol optical depth and atmospheric water vapor concentration. The 
inversion estimates the most probable state given the measurement. In a Bayesian formalism this is equiv-
alent to minimizing the cost function:

 1 1( ) ( ( ) ) ( ( ) ) ( ) ( )T T
a a a

      x F x y S F x y x x S x x� (4)

The matrix S  represents the covariance of the zero mean observation noise. Its term penalizes departure 
of the modeled radiance from the measurement, weighted by the observation noise covariance. The second 
term of Equation 4 penalizes departure from the prior, a multivariate Gaussian with mean ax  and covari-
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ance aS . We construct a prior distribution following the procedure of D. R. Thompson et al. (2020), assuming 
atmospheric terms are independent. We form a surface prior using a wide range of terrestrial spectra from 
the USGS Spectral library (Kokaly et al., 2017), and a set of open water spectra described in D. R. Thompson, 
Cawse-Nicholson et al. (2019). As in D. R. Thompson et al. (2020), we use a conservative prior with all wave-
lengths uncorrelated outside the key water absorption windows. We also use regularization (Theiler, 2012) 
to ensure that the inversion can accurately reproduce shapes outside the envelope of library spectra. With 
this conservative uninformed prior, and haze-free scenes, the results are very similar to other alternative 
inversion methods based on differential optical absorption ratios (Schläpfer et al., 1998).

In order to evaluate the impact of the miscalibration-induced errors, we compare the magnitudes to: (a) 
the error induced by measurement noise alone; and (b) the background variability in ecosystems similar to 
what SBG would measure. For the second comparison, we use the standard deviation of traits from repre-
sentative surveys in public literature. Terrestrial ecology traits use values taken from a multi-site study by 
Wang et al. (2020): the standard deviation of LMA is 62.9 g 2m ; the standard deviation of N concentration 
0.72%, and the standard deviation of LWC is 7.9%. The standard deviation of marine ecosystem chlorophyll 
is 0.275 mg 3m ; it comes from long-term observations of a Pacific Coastal ecosystem (Marrari et al., 2017). 
CDOM standard deviations of 0.11 (absorption at 440 nm) come from 36 months of observations in coastal 
waters by Keith et al. (2002). These only provide a rough indication of natural variability and may not rep-
resent all regions.

Figure 6 shows the reflectance spectra used for this study. The black line shows the inversion for a perfectly 
calibrated instrument. The red lines show the same result with a wavelength miscalibration of 1 nm. This 
is well within the range of shifts experienced by many historical instruments. The effect is most obvious 
in wavelengths with jagged, high contrast radiance structure. Artifacts appear in the near infrared region 
of the plant canopy from 750 to 1,300 nm, which includes a range of oxygen and water vapor features. The 
aquatic spectral range has less absorption by atmospheric gases, but shows artifacts in the shortest wave-
lengths near 400 nm that correspond to sharp solar absorption lines. We run 100 trials for each combination 
of distortions, atmospheres and spectra, and take the mean result.

3.  Results
Figure 7 shows performance for the LMA model. The leftmost plot shows error as a function of spectral 
wavelength shift. The discrepancy at zero miscalibration is caused by instrument measurement error, but 
departures increase rapidly with larger miscalibrations. The black solid line is a polynomial fit to the data 
points for the dry atmospheric state, and the red solid line represents the humid atmospheric state. As ex-
pected, performance degrades more dramatically in humid conditions. The black dotted line represents the 
true value. A dark shaded area represents the variance due to retrieval noise, and a light gray shaded area 
represents the background variability (Wang et al., 2020). Error due to miscalibration exceeds the meas-
urement noise at wavelength shifts of less than 0.25 nm, and it exceeds the background variability at wave-
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Figure 6.  Vegetation and aquatic spectra used for this study, with characteristic errors that result from a 1 nm wavelength shift.
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length shifts between 0.35 and 0.6 nm. The rightmost plot shows the stray spectral response errors. These 
impacts depend even more strongly on ambient atmospheric conditions—the dry atmosphere is almost 
unaffected, while the humid atmosphere is strongly affected at stray response levels above 0.0001 times the 
peak response.

Figures 8 and 9 shows similar plots for the N and LWC traits. The impact of wavelength shifts, in the left-
most plots, are similar to LMA. As miscalibrations grow, these errors quickly exceed instrument noise. 
They eventually exceed background variability at shifts between 0.5 and 1.25 nm, with humid atmospheres 
always more sensitive than dry atmospheres. The effect of stray spectral response is also consistent; ob-
servations in dry atmospheres are nearly immune to spectral response error while observations in humid 
atmospheres are highly sensitive. N is severely impacted, exceeding background variability for even small 
amounts of spectral calibration error. These differences between dry and humid atmospheres would induce 
atmospheric biases in the trait retrieval, thwarting attempts to combine results across dry and humid atmos-
pheres. These errors are particularly problematic because they masquerade as ecosystem-related signals in 
different vegetation, when in fact they are from the atmosphere. In general, the humidity-induced biases for 
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Figure 7.  Errors induced by calibration errors for leaf mass per area (LMA) in dry and humid atmospheres. Shaded areas represent the uncertainty due to 
measurement noise in dark gray and the background variability in ecosystem traits from Wang et al. (2020) in light gray. The black dotted line shows the true 
value. Left: Errors due to spectral wavelength shift. Right: Errors due to stray spectral response.

Figure 8.  Errors in leaf nitrogen induced by calibration errors in dry and humid atmospheres. Shaded areas represent the uncertainty due to measurement 
noise and the background variability in ecosystem traits from Wang et al. (2020). The black dotted line shows the true value. Left: Errors due to spectral 
wavelength shift. Right: Errors due to stray spectral response.
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these plant traits exceed the background variability at a spectral shift of 1.0 nm, and stray response magni-
tudes of less than 0.0001.

To quantify this effect we calculate shift-induced errors for different terrestrial biomes based on the annu-
al mean water vapor content of their atmospheres. We correlate land cover maps from the University of 
Maryland land cover classification system (Defries & Hansen, 2010) and annualized MODIS mean water 
vapor estimates (Gao et al., 2015). This procedure indicates the mean water vapor content for each land 
cover class. Interpolating between our wet and dry errors yields a first-order approximation of the expected 
total error induced from spectral miscalibration for each land cover type. Table 1 shows the result for a 
wavelength offset of 1.0 nm. Clearly, high water vapor content in some biomes leads to more severe errors. 
This level of wavelength shift (which is nevertheless within historic bounds) induces the largest systematic 
errors in humid atmospheres, particularly the evergreen broadleaf forest cover type. Such systematic differ-
ences would complicate any attempt to apply a single model across multiple wide geographic areas.
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Figure 9.  Errors induced by calibration errors for leaf water content (LWC) in dry and humid atmospheres. Shaded areas represent the uncertainty due to 
measurement noise and the background variability in ecosystem traits from Wang et al. (2020). The black dotted line shows the true value. Left: Errors due to 
spectral wavelength shift. Right: Errors due to stray spectral response.

Land Cover Type 2H O(g 2cm ) LMA Error(%) N Error(%) LWC Error(%)

Evergreen Needleleaf Forest 0.958 21 −18 36

Evergreen Broadleaf Forest 3.614 40 −39 76

Deciduous Needleleaf Forest 0.770 20 −16 33

Deciduous Broadleaf Forest 2.023 29 −26 52

Mixed Forest 1.213 23 −20 39

Woodlands 2.007 29 −26 51

Wooded Grasslands/Shrublands 1.101 22 −19 38

Closed Bushlands or Shrublands 1.869 28 −25 49

Open Shrubland 2.496 32 −30 59

Grasslands 1.119 22 −19 38

Croplands 1.647 26 −23 46

Note. Humid atmospheres, such as the broadleaf forests of tropical regions, are most heavily impacted. Predictions are based on the annual mean water vapor 
content for each land cover class.

Table 1 
Expected Systematic Errors in Percent for Each Vegetation Trait Induced by a 1 nm (10%) Wavelength Shift, as a Function of Atmospheres in Different Land Cover 
Type
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As expected, the aquatic analyses are all less sensitive to spectral calibration error. Figures  10–12 show 
the result for chlorophyll, CDOM absorption at 440  nm, and suspended sediment, respectively. Again, 
the shaded areas represent measurement noise and background variability. As wavelength shift increases, 
performance initially degrades more gracefully than in the vegetation case, with errors of just 25% for a 
1 nm shift. Wavelength shifts above 1.0 nm become increasingly detrimental, and even catastrophic for 
chlorophyll as residual artifacts grow around the sharp solar lines overlapping the 440 nm absorption fea-
ture. The other water column parameters show a similar degradation profile with very little effect until the 
1.0 nm threshold is reached. Single-spectrum measurement errors due to noise alone are 5%–10% for all 
constituents. Neither dry nor humid atmospheres show any significant sensitivity to stray spectral response.

4.  Discussion
Our experiments demonstrate that the SBG investigation will be highly sensitive to spectral calibration 
error. In particular, SBG's terrestrial ecosystem objectives, as currently envisioned to use data driven trait 
models, will likely demand tighter calibration tolerances than previous missions such as Hyperion. The 
unique, global nature of the investigation, coupled with the subtle and spectrally dispersed nature of eco-
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Figure 10.  Errors induced by wavelength calibration errors for chlorophyll a estimation in dry and humid atmospheres. Shaded areas represent the uncertainty 
due to measurement noise and the background variability in ecosystem traits as described in the text. Left: Errors due to spectral wavelength shift Right: Errors 
due to stray spectral response.

Figure 11.  Errors induced by wavelength calibration errors for Colored Dissolved Organic Matter (CDOM) estimation in dry and humid atmospheres. Shaded 
areas represent the uncertainty due to measurement noise and the background variability in ecosystem traits as described in the text. The black dotted line 
shows the true value. Left: Errors due to spectral wavelength shift Right: Errors due to stray spectral response.
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system signals, means that small miscalibrations can have a significant impact on product accuracy and sci-
ence yield. This extends upon earlier analysis by Green (1998), which demonstrated that wavelength shifts 
exceeding 1%–2% produce visible artifacts in reflectance spectra. Here we show that these artifacts affect the 
downstream biogeochemical measurements critical for SBG. Even inaccuracy of 5% (0.5 nm), a level which 
would traditionally have been considered safe for most applications, has a performance impact larger than 
the instrument noise. Higher levels become progressively more deleterious, inducing atmosphere-depend-
ent biases that could impact comparisons across biomes or environmental gradients. More sophisticated 
aquatic retrievals, such as estimation of secondary pigments beyond chlorophyll a (Cael et al., 2020; Kramer 
& Siegel, 2019), could be similarly sensitive. Potential sources of these errors include wavelength drift over 
time, stray spectral response, and spatial non-uniformity of the wavelength calibration. All should be con-
sidered in the SBG design.

Historical missions show that adequate spectral calibration is achievable. Atmospheric features reveal the 
on-orbit spectral calibration from flight data (Guanter, Alonso, et al., 2006). These show that imaging spec-
trometers vary widely in wavelength calibration, spanning an order of magnitude in performance. The first 
orbital VSWIR imaging spectrometer, the Hyperion instrument onboard the EO-1 mission, achieved a cross-
track spectral nonuniformity of 1.7–2.55 nm in the Visible Near InfraRed (VNIR) (Pearlman et al., 2001). 
At the other extreme, airborne instruments like the National Ecological Observation Network (NEON) Im-
aging Spectrometer have demonstrated uncorrected cross-track uniformity within 0.1  nm, or 2% of the 
channel spacing (Leisso et al., 2014). Between these extremes like a range of calibration errors. Table 2 sum-
marizes these wavelength shifts along with several performance thresholds in our study: the miscalibration 
levels equivalent to measurement noise, and those at which errors exceed the standard deviation of envi-
ronmental variability. The result is sobering; to succeed, SBG must outperform most historical instruments.

There are several ways to prevent spectroscopy-induced trait errors. Combating drift is relatively easy, since 
atmospheric features provide an absolute standard to track wavelength calibration shifts over time. Future 
missions should operationalize this process to prevent avoidable errors. Wavelength inaccuracy caused by 
spatial nonuniformity is more challenging to address. One can resample the radiance data after acquisition, 
mapping different calibrations to a common wavelength grid. However, a 10 nm measurement grid gener-
ally undersamples the high-contrast atmospheric structure in radiance spectra. Consequently, resampling 
can cause errors such as distorted shapes or shifted band positions. Such corrections may not compensate 
completely for nonuniformities—for example, the DESIS mission software corrections reduced its spectral 
smile by approximately 38% (Alonso et  al.,  2019). An alternative might be to resample the reflectances 
instead, as in Goetz et  al.  (2003) or Richter et  al.  (2011). Specifically, one could run multiple radiative 
transfer calculations for different spectral calibrations, apply a specific model for atmospheric correction at 
each, and then resample the result in reflectance space where features are smoother and more amenable to 
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Figure 12.  Errors induced by wavelength calibration errors for suspended sediment estimation in dry and humid atmospheres. A shaded area represents 
the uncertainty due to measurement noise. The black dotted line shows the true value. Left: Errors due to spectral wavelength shift Right: Errors due to stray 
spectral response.
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interpolation. However, this approach is comparatively complex to implement. It still requires that the dis-
tortions be well characterized, and suffers some inevitable loss of information in sharp reflectance features 
or slopes. Finally, wavelength shifts are often a symptom of other miscalibration problems, such as field of 
view misregistration across channels. Resampling is a useful tool, but it is not a panacea.

Another remedy is to modify the retrieval methods to make them less susceptible to miscalibration errors. 
The terrestrial coefficients in our study are notable for having rapid oscillations and large first derivatives. 
This is common in empirical models of foliar traits, which often cue on very specific channel relationships 
(Wang et al., 2020). While the dominant compounds in tree canopies have broadband absorption features 
(Elvidge, 1990; Feret et al., 2008; Ustin et al., 2009), the expression of relevant biophysical differences is far 
subtler. This is at least partially due to the strong overlap between absorption coefficients (particularly in the 
SWIR), which requires algorithms to isolate specific spectral peaks from the otherwise smooth spectral re-
gions. Importantly, although the sharp oscillatory structure in PLSR coefficients also appears in some other 
common trait estimation methods, it is not universal. On the contrary, trait retrieval methods that leverage 
physically based canopy RTMs (Berger et al., 2018; Verrelst et al., 2019) have broad and smooth spectral gain 
features that may be less susceptible to spectral precision and uniformity, to the point that some trait retriev-
al is even possible using multispectral sensors like Landsat (Houborg et al., 2015). However, compared to 
data-driven approaches, physically based approaches are typically more computationally intensive and are 
limited to a much smaller, though growing (Feret et al., 2008; Féret et al., 2017, 2021), set of target traits. 
Therefore, realizing the full potential of SBG for plant trait mapping depends on minimizing the spectral 
calibration issues raised in this manuscript.

Besides spectral resampling and better algorithms, perhaps the best and most elegant solution is simply to 
prioritize spectral calibration highly in instrument design. This should include consideration of both spa-
tial uniformity and control of stray light. Adequate performance has been achieved by multiple historical 
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Wavelength Shift Significance References

0.1 nm APEXa Kuhlmann et al. (2016)

0.1 nm NIS Leisso et al. (2014)

0.1 nm AVIRIS-NG D. Thompson et al. (2015)

0.2 nm Vegetation N error exceeds SBG measurement noise This study

0.2 nm CHRIS/PROBA Guanter, Alonso, et al. (2006)

0.2 nm CWIS Gorp et al. (2016)

0.4 nm Vegetation N humidity bias exceeds SBG measurement noise This study

0.5 nm Vegetation LWC error exceeds environment variability This study, Wang et al. (2020)

0.5 nm ENMAP calibration requirement Guanter et al. (2015)

0.55 nm DESISa Alonso et al. (2019)

1.0 nm Vegetation LWC humidity bias exceeds environment variability This study, Wang et al. (2020)

1.0 nm Aquatic Chl error exceeds SBG measurement noise This study

1.2 nm HyMAPb Guanter, Alonso, et al. (2006)

1.5 nm Aquatic Chl error exceeds environment variability This study, Marrari et al. (2017)

2.0 nm ENMAP spectral smile requirement Guanter et al. (2015)

2.0 nm PRISMA spectral smile Cogliati et al. (2021)

1.7–2.55 nm Hyperion spectral smile Pearlman et al. (2001)

Note. Rows indicate levels at which the shift-induced error exceeds other sources of variability in the measurement or 
environment. All comparisons use humid atmospheric conditions unless noted.
aA software correction was applied to achieve the reported performance. bObserved drift over one flight season.

Table 2 
Wavelength Calibration Error and Spatial Nonuniformity of Historical Instruments
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instruments, demonstrating that the desired level of performance is possible in practice without excessive 
cost. Designing to these standards will reap long-term dividends in algorithms that generalize better and 
translate more easily to partner instruments. In the design phase, modern tolerancing and error analyses 
(Moore et al., 2020) can provide rapid assessment of predicted optical performance and identification of 
driving tolerances, which can be used to improve uniformity and other key performance parameters. Mod-
ern alignment methods can validate the spectral response, spatial response, and uniformity characteristics 
prior to launch (Bender et al., 2011). For a global ecosystem study like SBG, no degree of wavelength shift 
should be considered “safe.” Spatial uniformity requirements should be established. Uniformity should 
be reported in descriptions of instrument performance alongside the more commonly quoted radiometric 
performance.

Stray spectral response is a slightly different problem. Its effects range from negligible under dry atmos-
pheres, to extreme under more humid ones. This difference could induce ecosystem-dependent biases in 
global vegetation products. Unlike spectral calibration, which can be ensured by good optical design, align-
ment, and operational practices (Bender et al., 2011), stray spectral response depends on the scattering prop-
erties of different components that are more difficult to predict or change. Fortunately, stray response may 
also be more amenable to software corrections. Unlike the wavelength grid which under samples sharp re-
flectance shapes, the extended spectral response is oversampled by the focal plane array so the information 
exists to reconstruct the nominal measurement. Software approaches to characterizing and correcting spec-
tral response functions have been demonstrated operationally for many years (D. R. Thompson, Boardman, 
et al., 2018; Kuhlmann et al., 2016; Zong et al., 2006). The extended spectral response function is measured 
in the laboratory or in flight, after which it can be deconvolved to restore a pristine Gaussian response. The 
upcoming EMIT mission (Green et al., 2020) may deploy this procedure operationally, offering a chance to 
evaluate whether such an approach will meet SBG needs.

Finally, we note some important caveats. This was intended as a sensitivity study based on a handful of 
representative but stressing example retrievals. It is concise rather than comprehensive, and the results 
of particular studies may not match these predicted impacts. It also ignores some other important errors 
that are more difficult to simulate, such as keystone distortions in which different wavelengths come from 
different locations on the surface. Finally, alternative retrieval algorithms or PLSR models might possibly 
achieve similar measurements with less sensitivity to spectral calibration error. Nevertheless, the funda-
mental conclusion—that terrestrial ecosystems require highly accurate spectral calibration—is consistent 
with previous work and should hold more generally.

5.  Conclusions
This study investigates the impact of spectral calibration errors, in the form of wavelength calibration shifts 
and stray spectral response, on SBG objectives. We simulate these errors for inversion problems that are 
representative of aquatic and terrestrial ecology measurements. We show that inaccuracies which have 
been considered acceptable for previous missions can easily induce systematic error that is larger than the 
instrument noise and comparable to the variation in physical properties SBG aims to measure. Terrestrial 
ecosystem studies that rely on subtle delineations between spectral features of tree canopies are particu-
larly sensitive to such errors. Previous orbital instruments have shown a wide range of spectral calibration 
accuracy. Surface measurements using PLSR favor the upper range of historical spectrometer performance 
to avoid errors exceeding not just the measurement noise, but even the background variability in terrestrial 
biomes. Investigators should be aware that even minor spectral miscalibration due to drift or spatial nonuni-
formity can induce systematic atmosphere-dependent errors in vegetation traits. Since vegetation commu-
nity composition correlates strongly with these environmental factors, limiting such biases is important for 
building consistent global maps. Measuring and reducing stray spectral response should also be a primary 
concern. Despite these admonitions, the SBG investigation promises to revolutionize our understanding of 
terrestrial and aquatic ecosystems. All the performance targets implied by this study are achievable, or have 
been achieved, by historical instruments. Thus, with due attention to spectral calibration accuracy, there is 
reason for great optimism in the SBG endeavor.
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Data Availability Statement
Code used for the forward and inverse modeling can be found at the ISOFIT repository (https://github.
com/isofit/isofit). Data used in the experiments can be found at zenodo, in a repository that is, available to 
reviewers and made fully public after acceptance for publication (https://doi.org/10.5281/zenodo.3735479).
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